columns, while in $\beta-V_{3} S$ they form nets. This is apparent from Fig. 6 and one can easily see how the metal atoms in the β-W structure must be moved to give the atomic arrangement in $\beta-\mathrm{V}_{3} \mathrm{~S}$ (the $\mathrm{V}-B$ columns have been omitted for the sake of clarity). It seems reasonable to suppose that this rearrangement causes little change in bond distance between the metal atoms in the V-V column. It is between these metal atoms that the short bond distance is observed in the β-W structure, and it is also between these atoms that the short $\mathrm{V}-\mathrm{V}$ distance, $2 \cdot 44 \AA$, is found in $\beta-\mathrm{V}_{3} \mathrm{~S}$.

The structures of $\alpha-V_{3} S$ and $\mathrm{Ni}_{3} \mathrm{P}$ are closely related, but $\alpha-V_{3} S$ has higher symmetry than $\mathrm{Ni}_{3} P$. It might therefore seem natural to describe the structure of $\mathrm{Ni}_{3} \mathrm{P}$ as a somewhat deformed $\alpha-V_{3} \mathrm{~S}$ structure. The $\mathrm{Ni}_{3} \mathrm{P}$ structure is related to the β-W structure via the structures of $\alpha-\mathrm{V}_{3} \mathrm{~S}$ and $\beta-\mathrm{V}_{3} \mathrm{~S}$. That such a relationship might be expected is indicated by the remarks of Schønberg (Aronsson, 1955) that $\mathrm{V}_{3} \mathrm{P}$ is isotypic with $\mathrm{Ni}_{3} \mathrm{P}$, and by Mathias et al. (1957) that $\mathrm{V}_{3} \mathrm{P}$ has a slightly distorted β-W structure.

The authors wish to thank Prof. Haakon Haraldsen for his interest in this study and for placing laboratory facilities at their disposal.

References

Aronsson, B. (1955). Acta Chem. Scand. 9, 137.
Biltz, W. \& Köcher, A. (1939). Z. anorg. Chem. 242, 275.

Cruickshank, D. W. J. (1949). Acta Cryst. 2, 65.
Geller, S. (1956). Acta Cryst. 9, 885.
Internationale Tabellen zur Bestimmung von Kristallstrukturen (1935). Berlin: Borntraeger.
International Tables for X-ray Crystallography (1952). Birmingham: Kynoch Press.
Mathias, B. T., Wood, E. A., Corenzwit, E. \& Bala, V. B. (1957). J. Phys. Chem. Solids, 1, 188.

Pauling, L. (1957). Acta Cryst. 10, 374.
Pauling, L. (1947). J. Amer. Chem. Soc. 69, 542.
Pedersen, B. (1958). Thesis. University of Oslo.
Seybolt, A. U. \& Sumsion, H. T. (1953). J. Metals, 5, 292.

Vogel, R. \& Wüstefeld, A. (1938). Archiv Eisenhüttenw. 12, 261.

X-ray Studies on the Metal Complexes with the Glyoximes. II. Structure of the Pt-Dimethyl-Glyoxime

By Edoardo Frasson, Carlo Panattoni and Roberto Zannetti
Centro di Strutturistica Chimica del C. N. R. and Istituto di Chimica Organica, Universita' di Padova, Italia

(Received 1 April 1959 and in revised form 7 May 1959)
During a systematic investigation of the metal complexes of the glyoximes, the structure of Pt-dimethyl-glyoxime has been examined. It has the same space group Ibam as Ni-dimethyl-glyoxime. The lattice constants are $a=16 \cdot 73, b=10.59, c=6.47 \AA ; Z=4$. Such values are similar to those found in Ni-dimethyl-glyoxime.

The molecule is planar and the $\mathrm{Pt}-\mathrm{Pt}$ distances between metallic atoms of overlying molecules are $3.23 \AA$. The intramolecular distance of $3.03 \AA$ between the oxygen atoms bound by a hydrogen bond, is significantly longer than the one in Ni-dimethyl-glyoxime ($2 \cdot 44 \AA$) and in Cu-dimethylglyoxime ($2 \cdot 57-2 \cdot 70 \AA$).

Introduction

In this Centro di Strutturistica Chimica we have examined a series of compounds having the following general formula:

This work has shown a variety of possibilities of packing as well as of molecular structure due to the differences of coordination of the metals as well as to the substituent group R present in the molecule.
Frasson, Bardi \& Bezzi (1959) have recently described the structure of Cu-dimethyl-glyoxime showing the differences between it and the Ni-dimethylglyoxime studied by Godycki \& Rundle (1953). The two structures are mainly differentiated by the pyramidal five-fold coordination of the copper, the lack of planarity of the molecule, the formation of a dimer through $\mathrm{Cu}-\mathrm{O}$ bonds between atoms of different molecules on the one hand and the regular octahedral coordination of the Ni, the planarity of the molecule
and the formation of molecular chains through $\mathrm{Ni}-\mathrm{Ni}$ bonds on the other.

During our preliminary examination of the structures of methyl-ethyl-glyoximes of Cu and Ni (1959), two new structural types were detected for the compounds with octahedral coordination distorted for the Cu and regular for the Ni respectively, and with formation of molecular chains through $M-\mathrm{O}$ bonds between atoms of different molecules.

The structure of Pt -dimethyl-glyoxime, described in the present paper, is seen to belong to the same structural type as Ni -dimethyl-glyoxime.

Experimental and crystal data

Pt-dimethyl-glyoxime crystals were prepared from chloro-platinic acid reduced with SO_{2} and dimethylglyoxime in alcoholic solution. The dark-grey compound was purified through several crystallizations from nitrobenzene. The brown crystals were examined with $\mathrm{Cu} K \alpha$ radiation in the precession camera for space-group determination. The crystals proved to belong to the space-group Ibam. The lattice constants were:

$$
a=16 \cdot 73 \pm 0 \cdot 06, \quad b=10.59 \pm 0.05, \quad c=6 \cdot 47 \pm 0 \cdot 02 \AA
$$

the pycnometric density is $2.40 \mathrm{~g} . \mathrm{cm} .^{-3}$; the calculated density for $Z=4$ is $2.40 \mathrm{~g} . \mathrm{cm} .^{-3}$.

The intensities were measured by the multiple-film technique in a Weissenberg camera having an attachment for linear integration. Intensities were evaluated by means of photometric integration.

Notwithstanding the appreciable value of the mass absorption coefficient, the absorbing power of our crystals appeared to be very low owing to their small size. The values of the absorption coefficient in the direction of the two diagonals of the section were $\mu l=1.47$ and $\mu l=1.07$ and in the third direction $\mu l=$ $1 \cdot 32$. The intensities were corrected with the usual Lorentz and polarization factors.

Electron-density maps

Owing to the presence of only four molecules in the unit cell, the Pt atom is to be located at the symmetry centres. Projections of electron density were therefore directly calculated on (001) and (010). The structure factors were given the positive sign owing to the presence of the heavy atom at the cell origin.

From the electron-density projections it is seen that the molecules are parallel to the (001) plane with coordinates 0 and $\frac{1}{2}$ along the z direction. The projection shows the characteristic diffraction ripples due to the heavy atom. In order to measure the probable displacement caused by the diffraction ripples on the localisation of the light atoms, we examined the crosssection of the electron density in a radial direction with respect to the heavy atom centre in a zone with no maxima due to light atoms. The first order ring has
the value 8 e. \AA^{-2}. This diffraction effect being far from all maxima due to light atoms, no disturbance is possible. The second-order ring, having the value 1.8 e. \AA^{-2}, slightly disturbes the position of the two nitrogen atoms, the maximum height of which reaches $16 \mathrm{e} . \AA^{-2}$. The third-order ring has the value of $1 \cdot 2$ e. \AA^{-2} in a zone where the maxima due to the oxygen atoms and to the carbon atoms of the chelate ring are 16 e. \AA^{-2}. In both cases the small contribution due to these spurious maxima were subtracted from the electron density in order to localize the light atoms.

The structure factors were calculated with the atomic coordinates determined from the electron-density map. For the overlapping maxima the knowledge of the bonds lengths and angles of similar compounds were used in a first approximation. The atomic factors of Berghuis et al. (1955) and the mean temperature factor derived from a plot of the $\log F_{o} / F_{c}$ against $\sin ^{2} \theta / \lambda^{2}$ were used to calculate the contribution of the light atoms.

For the calculation of the atomic factor of the heavy atom, the calculated contribution of the light atoms was subtracted from the experimental structure factors and a plot was drawn with the values $F_{o}-F_{\mathrm{C}, \mathrm{N}, \mathrm{O}}$ against $\sin ^{2} \theta / \lambda^{2}$. The curve obtained is shown in Fig. l. At this stage the reliability factor was $R=0 \cdot 14$.

Examination of the profile of the electron-density maxima revealed the existence of a thermal factor for the light atoms quite different from the mean thermal factor. By introducing this new thermal factor for the light atoms the reliability factor fell to $R=0 \cdot 11$.

The calculation of some $F_{o}-F_{c}$ maps suggested some displacements of light atoms. For example, the O_{1} atom that initially had been localised using an angle $\mathrm{Pt}-\mathrm{N}_{1}-\mathrm{O}_{1}$ of 120° was displaced away from the O_{2} atom so that the final value of the angle $\mathrm{Pt}-\mathrm{N}_{1}-\mathrm{O}_{1}$ became 134°. This value is in agreement with the $\mathrm{Pt}-\mathrm{N}_{2}-\mathrm{O}_{2}$ angle of 135° independently determined.

Fig. 1. Diffraction power of the Pt atom in Pt -dimethylglyoxime as a function of $\sin ^{2} \theta / \lambda^{2}$. The atomic scattering factor given by Internationale Tabellen are also shown for comparison.

Table 1. Observed and calculated structure factors for the $h k 0$ and $h 0 l$ reflections

$h k 0$	F_{o}	F_{c}	$h k 0$	F_{0}	F_{c}	$h k 0$	F_{o}	F_{c}	$h k 0$	F_{o}	F_{c}
200	356.9	$354 \cdot 8$	19,3,0	$80 \cdot 6$	$96 \cdot 2$	15,7,0	$100 \cdot 4$	101.9	1,13,0	$76 \cdot 0$	$95 \cdot 3$
400	$248 \cdot 2$	$240 \cdot 2$				17,7,0	$76 \cdot 9$	$90 \cdot 2$	3,13,0	$66 \cdot 3$	$84 \cdot 2$
600	$250 \cdot 0$	$261 \cdot 0$	040	213.2	248.9				5,13,0	$63 \cdot 1$	$82 \cdot 6$
800	$240 \cdot 0$	$247 \cdot 4$	240	$305 \cdot 4$	312.9	080	$180 \cdot 6$	$190 \cdot 7$	5,13,0		
10,0,0	$186 \cdot 6$	191.3	440	$239 \cdot 9$	$219 \cdot 0$	280	$179 \cdot 6$	$165 \cdot 2$			
12,0,0	$197 \cdot 6$	$190 \cdot 5$	640	$179 \cdot 2$	193.5	480	$133 \cdot 1$	$132 \cdot 2$			
14,0,0	$135 \cdot 4$	$125 \cdot 7$	840	$165 \cdot 3$	$177 \cdot 7$	680	$134 \cdot 4$	116.7	h0l	F_{o}	F_{c}
16,0,0	$120 \cdot 7$	$111 \cdot 0$	10,4,0	$220 \cdot 1$	$177 \cdot 7$	880	$157 \cdot 9$	146.6	002	$567 \cdot 1$	$567 \cdot 1$
18,0,0	$102 \cdot 7$	112.4	12,4,0	$131 \cdot 7$	128.2	10,8,0	$114 \cdot 7$	$122 \cdot 3$	202	$299 \cdot 2$	$303 \cdot 2$
20,0,0	58.5	95.9	14,4,0	123.8	121.0	12,8,0	$98 \cdot 1$	$103 \cdot 3$	402	$200 \cdot 0$	216.8
			16,4,0	111.4	116.4	14,8,0	$92 \cdot 1$	$97 \cdot 3$	602	236.5	$231 \cdot 6$
110	$376 \cdot 0$	$384 \cdot 2$	18,4,0	$82 \cdot 0$	$95 \cdot 4$	16,8,0	$80 \cdot 2$	$80 \cdot 2$	802	$234 \cdot 9$	221.7
310	$220 \cdot 1$	$195 \cdot 1$	20,4,0	$78 \cdot 2$	$78 \cdot 8$				10,0,2	$154 \cdot 2$	179.7
510	$310 \cdot 4$	$294 \cdot 9$				190	156.6	$141 \cdot 4$	12,0,2	153.0	171.3
710	$319 \cdot 1$	$279 \cdot 0$	150	$231 \cdot 2$	246.0	390	123.4	$131 \cdot 1$	14,0,2	$115 \cdot 3$	$117 \cdot 1$
910	216.4	208.2	350	$239 \cdot 0$	$245 \cdot 8$	590	127.5	$120 \cdot 6$	16,0,2	$79 \cdot 5$	$100 \cdot 8$
11,1,0	$178 \cdot 6$	181.1	550	$163 \cdot 0$	$172 \cdot 8$	790	141.4	$132 \cdot 7$	18,0,2	$83 \cdot 5$	$103 \cdot 6$
13,1,0	$145 \cdot 1$	$164 \cdot 2$	750	$182 \cdot 9$	$191 \cdot 8$	990	$135 \cdot 4$	$132 \cdot 7$			
15,1,0	$127 \cdot 5$	$128 \cdot 1$	950	$230 \cdot 2$	$223 \cdot 3$	11,9,0	118.8	$110 \cdot 1$	004	$317 \cdot 3$	331.4
17,1,0	111.0	$126 \cdot 4$	11,5,0	$174 \cdot 1$	$176 \cdot 0$	13,9,0	$94 \cdot 9$	$103 \cdot 6$	204	$230 \cdot 9$	212.4
19,1,0	$85 \cdot 2$	$93 \cdot 5$	13,5,0	$125 \cdot 8$	131.9	15,9,0	$77 \cdot 8$	93.5	404	$158 \cdot 6$	$171 \cdot 0$
21,1,0	$82 \cdot 0$	$76 \cdot 9$	15,5,0	$125 \cdot 7$	122.9				604	176.5	176.5
			17,5,0	$92 \cdot 6$	$104 \cdot 2$	0,10,0	$149 \cdot 2$	$130 \cdot 1$	804	$190 \cdot 8$	169.8
020	$229 \cdot 6$	$235 \cdot 8$	19,5,0	$83 \cdot 0$	88.8	2,10,0	$152 \cdot 4$	137.9	10,0,4	$115 \cdot 3$	$145 \cdot 1$
220	$200 \cdot 3$	$190 \cdot 7$				4,10,0	$130 \cdot 4$	123.2	12,0,4	$130 \cdot 6$	$137 \cdot 6$
420	$197 \cdot 6$	$184 \cdot 9$	060	186.5	198.3	6,10,0	$152 \cdot 8$	$130 \cdot 6$	14,0,4	$90 \cdot 8$	$100 \cdot 5$
620	$301 \cdot 2$	$274 \cdot 0$	260	$209 \cdot 1$	$204 \cdot 4$	8,10,0	$126 \cdot 1$	119.6	16,0,4	$72 \cdot 3$	91.4
820	$232 \cdot 2$	$232 \cdot 4$	460	$226 \cdot 5$	$214 \cdot 1$	10,10,0	$114 \cdot 1$	109.3			
10,2,0	$195 \cdot 8$	218.7	660	$209 \cdot 1$	$193 \cdot 3$	12,10,0	$94 \cdot 9$	$92 \cdot 2$	006	$195 \cdot 3$	$196 \cdot 0$
12,2,0	$153 \cdot 4$	$159 \cdot 0$	860	$254 \cdot 2$	$210 \cdot 7$	14,10,0	$67 \cdot 2$	$88 \cdot 1$	206	$145 \cdot 3$	$142 \cdot 9$
14,2,0	$137 \cdot 7$	128.5	10,6,0	$186 \cdot 0$	$168 \cdot 2$				406	$130 \cdot 5$	$124 \cdot 1$
16,2,0	119.3	125.4	12,6,0	127.5	$127 \cdot 4$	1,11,0	$149 \cdot 6$	$138 \cdot 1$	606	$143 \cdot 3$	$124 \cdot 2$
18,2,0	$93 \cdot 4$	$110 \cdot 0$	14,6,0	118.4	122.3	3,11,0	123.8	$129 \cdot 6$	806	$120 \cdot 5$	121.9
20,2,0	$75 \cdot 1$	$79 \cdot 7$	16,6,0	102.7	111.0	5,11,0	120.7	$120 \cdot 2$	10,0,6	81.5	106.8
			18,6,0	$76 \cdot 0$	$94 \cdot 0$	7,11,0	$112 \cdot 8$	$113 \cdot 2$	12,0,6	$89 \cdot 1$	104.1
130	299.3	$278 \cdot 2$				9,11,0	$88 \cdot 9$	101•1	14,0,6	$74 \cdot 7$	$80 \cdot 2$
330	$244 \cdot 6$	$226 \cdot 0$	170	$206 \cdot 3$	188.9	11,11,0	$77 \cdot 4$	$94 \cdot 4$			
530	179.6	$169 \cdot 9$	370	198.9	193.0				008	$135 \cdot 7$	120.9
730	$210 \cdot 8$	196.8	570	192.0	$170 \cdot 8$	0,12,0	108•1	$107 \cdot 0$	208	$78 \cdot 7$	$96 \cdot 0$
930	$195 \cdot 7$	183.9	770	$150 \cdot 2$	$160 \cdot 0$	2,12,0	106.4	$105 \cdot 2$	408	$87 \cdot 9$	$86 \cdot 7$
11,3,0	181.9	$170 \cdot 9$	970	151.9	$154 \cdot 5$	4,12,0	104.4	$104 \cdot 0$	608	81.9	86.4
13,3,0	$104 \cdot 5$	$107 \cdot 3$	11,7,0	$104 \cdot 0$	96.5	6,12,0	$98 \cdot 1$	$100 \cdot 8$	808	$78 \cdot 3$	$84 \cdot 8$
15,3,0	128.0	$115 \cdot 1$	13,7,0	111.8	$107 \cdot 7$	8,12,0	$74 \cdot 6$	$94 \cdot 3$	10,0,8	$65 \cdot 4$	$76 \cdot 0$
17,3,0	$113 \cdot 2$	108.0									

The comparison between F_{o} and the new F_{c} gave $R=0 \cdot 09$. A maximum close to the origin of the $F_{o}-F_{c}$ maps was interpreted as due to thermal anisotropy of the heavy atom. An anisotropic thermal factor was introduced in the contribution of the Pt atom with the formula:

$$
f_{r}=f_{o} \cdot \exp \left[-\left(A+B \cos ^{2} \varphi\right) \sin ^{2} \theta / \lambda^{2}\right.
$$

where the coefficient A is the thermal factor derived from the experimental data in the direction of minimum vibration and $A+B$ is the temperature factor derived from the experimental data in the direction of maximum vibration.

With this correction R was lowered to a final value of 0.07 .

In the projection on (010) the comparison between F_{o} and F_{c} was calculated with the known coordinate x / a and with $z / c=0$ and with the introduction of the temperature factors derived from the other projection. The reliability factor was $0 \cdot 07$. Table 1 lists experimen-
tal and calculated structure factors for the $h k 0$ and $h 0 l$ zones.

Accuracy

Notwithstanding the high difference in the atomic number between the Pt and the other atoms in the structure the maxima due to oxygen and nitrogen atoms are sufficiently smooth and regular. On the contrary the maxima due to the methyl-group are spread and irregular. This may be seen in Fig. 2 in which the projection of electron density on (001) is drawn.

Unfortunately the nitrogen atoms of two overlying molecules give overlapping maxima in the projection.

Maxima of oxygen atoms also overlap those of the carbon atoms of the chelate ring. Therefore it was not possible to calculate the standard error of the coordinates using Cruickshank's method.

Determination of the mean error of coordinates by Luzzati's method obviously cannot be used owing to

Fig. 2. Electron-density projection on (001) for Pt-dimethyl-glyoxime. Contours are at intervals of 2 e. \AA^{-2} for the light atoms and of $4 \mathrm{e} . \AA^{-2}$ for the Pt atom starting from $4 \mathrm{e} . \AA^{-2}$. Upper levels for the Pt -atom are omitted.
the presence of a very heavy atom at a centre of symmetry. Therefore we have calculated a probable error by merely geometrical considerations of the shape of the maxima in the electron-density projection. Table 2 lists atomic coordinates with the probable errors. In Table 3 the bonds lengths and angles are listed.

Table 2. Atomic coordinates and probable errors

	x / a	y / b	z / c
Pt	$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 000$
C_{1}	0.234 ± 0.003	0.144 ± 0.005	0.000
C_{2}	0.148 ± 0.003	$0 \cdot 120 \pm 0.005$	$0 \cdot 000$
C_{3}	0.084 ± 0.003	0.224 ± 0.005	0.000
C_{4}	0.097 ± 0.003	0.361 ± 0.005	0.000
N_{1}	$0 \cdot 115 \pm 0.002$	0.012 ± 0.003	0.000
N_{2}	0.007 ± 0.002	$0 \cdot 184 \pm 0.003$	0.000
O_{1}	0.172 ± 0.002	-0.073 ± 0.003	0.000
O_{2}	-0.042 ± 0.002	0.268 ± 0.003	0.000

Table 3. Bond lengths and angles
$\mathrm{Pt}-\mathrm{Pt} \quad 3.23 \pm 0.01 \AA$

	$\begin{aligned} & 3.23 \pm 0.01 \\ & 1.93+0.04 \end{aligned}$	$\mathrm{Pt}-\mathrm{N}_{2}$	$5+0.04 \AA$
$\stackrel{\mathrm{Pt}}{\mathrm{N}} \mathrm{N}_{1}$	1.93 ± 0.04 1.31 ± 0.06	$\mathrm{Pt}-\mathrm{N}_{2}$ $\mathrm{~N}_{2}-\mathrm{O}_{2}$	1.95 ± 0.04 $1.24+0.06$
${ }_{\text {N }} \mathrm{N}_{1}-\mathrm{C}_{2}$	1.27 ± 0.09	$\stackrel{\mathrm{N}_{2}}{\mathrm{~N}_{2}-\mathrm{C}_{3}}$	1.38 ± 0.09
$\mathrm{C}_{2}-\mathrm{C}_{3}$	1.57 ± 0.10		
$\mathrm{C}_{1}-\mathrm{C}_{2}$	$1 \cdot 46 \pm 0 \cdot 10$	$\mathrm{C}_{3}-\mathrm{C}_{4}$	$1 \cdot 47 \pm 0 \cdot 10$
$\mathrm{O}_{1}-\mathrm{O}_{2}$	$3 \cdot 03 \pm 0 \cdot 06$		
$\mathrm{N}_{1}-\mathrm{Pt}-\mathrm{N}_{2}$	83°		
$\mathrm{Pt}-\mathrm{N}_{1}-\mathrm{O}_{1}$	134	$\mathrm{Pt}-\mathrm{N}_{2}-\mathrm{O}_{2}$	135°
$\mathrm{Pt}-\mathrm{N}_{1}-\mathrm{C}_{2}$	120	$\mathrm{Pt}-\mathrm{N}_{2}-\mathrm{C}_{3}$	115
$\mathrm{O}_{1}-\mathrm{N}_{1}-\mathrm{C}_{2}$	106	$\mathrm{O}_{2}-\mathrm{N}_{2}-\mathrm{C}_{3}$	110
$\mathrm{N}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$	113	$\mathrm{N}_{2}-\mathrm{C}_{3}-\mathrm{C}_{2}$	117
$\mathrm{N}_{1}-\mathrm{C}_{2}-\mathrm{C}_{1}$	126	$\mathrm{N}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$	117
$\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$	121	$\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}$	126

Description of the structure and discussion

Fig. 3 shows the Pt -dimethyl-glyoxime molecule with the bond lengths and angles calculated from the atomic coordinates. The structure is similar to the Ni -di-methyl-glyoxime structure with octahedral coordination around the Pt atom.

The length of the $M-M$ bond normal to the plane of the molecule is $3 \cdot 23 \pm 0 \cdot 01 \AA$. In Fig. 4 the molecular contacts caused by this intermolecular bond are shown.

The hydrogen bond in this structure is remarkably weaker than the $\mathrm{O}-\mathrm{H}-\mathrm{O}$ bond in the other structure of this type.

As is shown in Table 4, the lengths of the $\mathrm{Pt}-\mathrm{N}$ bonds are not very different from the lengths of the

Fig. 3. Bond lengths and angles in Pt-dimethyl-glyoxime.

Table 4. Variation of the $M-\mathrm{N}$ bonds and of hydrogen bonds in the glyoxime complexes

Fig. 4. Perspective view of the molecular contacts in Pt -dimethyl-glyoxime.
$M-\mathrm{N}$ bonds in Ni-dimethyl-glyoxime and in $\mathrm{Cu}-$ dimethyl-glyoxime. Therefore the exceptional length of the hydrogen bond in this structure is due to an increase of the $\mathrm{Pt}-\mathrm{N}-\mathrm{O}$ angles in respect to the $M-\mathrm{N}-\mathrm{O}$ angles in the other complexes of this type.
$M-\mathrm{N}$ bond (\AA)
$1.91 ; 1.96$
$1.87 ; 1.90$
$1.93 ; 1.95$
$1.93 ; 1.95$

$\mathrm{O}-\mathrm{H}-\mathrm{O}$ bond (\AA)	$M-\mathrm{N}-\mathrm{O}$ angle
$2.53 ; 2.70$	$121^{\circ} 30^{\prime} ; 125^{\circ}$
2.44	$118^{\circ} ; 122^{\circ}$
3.03	135°

From an infrared spectroscopic investigation of this compound in the solid state it was shown that the $\mathrm{O}-\mathrm{H}$ stretching frequency for the hydrogen bond is about $3450 \mathrm{~cm} .^{-1}$. According to the empirical correlation found by Nakamoto, Margoshes \& Rundle (1955), this value corresponds to a hydrogen bond length of about $2.9 \AA$. The difference of $0.1 \AA$ from the X-ray data is of the order of the uncertainty of the method of Nakamoto et al. (1955).
A discussion will be presented elsewhere on the spectroscopic data of this compound in relation to the other complexes of the series $M-R-R^{\prime}$-glyoximes.

We are indebted to Dr Cesare Pecile and to Istituto di Chimica Fisica of the University of Padua for the spectroscopic data.

References

Berghuts, J., Hannappel, IJ. M., Potters, M., Loopstra, B. O., McGillavry, C. H. \& Veenendaal, A.L. (1955). Acta Cryst. 8, 478.

Frasson, E., Bardi, R. \& Bezzr, S. (1959). Acta Cryst. 12, 201.
Frasson, E., Panattoni, C. \& Zannetti, R. (1959). Ric. Sci. 29, 744.
Godycki, L. E. \& Rundle, R. E. (1953). Acta Cryst. 6, 487.

Nakamoto, K., Margoshes, M. \& Rundle, R. E. (1955). J. Amer. Chem. Soc. 77, 6480.

